
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2157 http://www.webology.org

An Enhanced Approach Of RDF Graph Data In-Memory

Processing For Social Networks With Performance Analysis

M. Baby Nirmala1 , J. G. R. Sathiaseelan2

Research Scholar, Department of Computer Science, Bishop Heber College(Affiliated to

Bharathidasan University)Trichy, Tamilnadu, India

Associate Professor & Head, Department of Computer Science, Bishop Heber College

(Affiliated to Bharathidasan University)Trichy, Tamilnadu -620017, India

Abstract—

Ever-growing linked open data proliferate in size and number giving rise to “Big data problems”.

Consequently, there is a rapid increase inf semantic data and services. It is significant to handle and provide

more solutions to very large semantic data graphs are very significant. As the MapReduce algorithms are

iterative and less effective, there is a need to go for in-memory processing. Ain of this paper is providing an

enhanced RDF graph data processing approach with improved performance includes representation of RDF

as a Directed labeled Multigraph, convert that RDF Graph as property Graph to have modeling workarounds

(intermediate nodes), Reification and Singleton Property. Build this initial graph in high- performance analytic

system SPARK with Graph X library using SCALA language to provide higher-order functions. So that

functions and data structures can be stored in distributed memory and use SPARQL for query processing. The

objective is of this paper is to propose an enhanced RDF Graph in-memory processing method that quickens

the accessing of RDF Graph data, improves response times, and reduces the execution of time of RDF Graph

data processing of this Social Network data.

Keywords— Large Linked Open Data; In-memory processing; RDF; MapReduce; Spark; Graph X; Scala.

I. INTRODUCTION

The Web 3.0 otherwise called the Semantic Web is introduced by Tim Berners-Lee, is the extension of the

World Wide Web through standards established by the World Wide Web Consortium. This World Wide Web

has progressed to support data sharing and reuse "across applications, initiatives, and community boundaries.

Some of the basic building blocks of the Semantic web include Resource Description Framework (RDF),

RDFS, the Web Ontology Language (OWL), and SPARQL. It has many challenges such as massiveness,

indistinctness, ambiguity, inconsistency, and deceit. Automated reasoning systems should handle all these

problems [1]. Query processing should be addressed proficiently with highly accessible, scalable, and fault-

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2158 http://www.webology.org

tolerant frameworks. Usually, the data management systems requiring these properties are designed not from

scratch but built on top of the prevailing cluster computing engine.

II. BACKGROUND

1. Representation of RDF as Gra

Resource Description Framework (RDF) is the key-tech for developing semantic web. In Graph database

modes data is represented as directed labeled multi-graph. Theoretically, in the same way, the data encoded

using RDF also can be represented. In RDF Graph, resources (IRIs), blank nodes, and literals can be represented

as Vertices and edges from RDF triples. In other words, Subjects and Objects can be represented as nodes and

Predicates as Edges. The edge's label is an IRI which is the predicate of the triple. RDF graph differs slightly

in the case of the blank node as they have no identifiers. These RDF triples produced are used as Triple stores

which are organized as graphs [1] [21].

A. SPARQL, as the Query Language

A Highly recommended query language for RDF datasets by World Wide Web Consortium is SPARQL.

The following is an example of SPARQL query language:

SELECT? x,? y,? z

WHERE {x a Student. y a Representative. z a Scholar.

x friend y.

x competes with z.

y friend z

Extensive research has been conducted to optimize query engines. Sophisticated indexing approaches and

graph-based storage models are developed due to the unsettled research in this area [2]. Linked Data is

structured and interlinked with other data, through semantic queries they become more beneficial. It is built

upon the technologies such as HTTP, RDF which serves web pages for human readers. LOD extends them to

share the information which can be read by computers automatically. One of the visions of linked data is to

make the Internet to be a global database [3]. Linking Open Data Heath, T et al, (2013) say "Linked Open

Data (LOD) project has been initiated to provide a method of publishing a variety of structured data sets as

interlinked RDF data sets". Linked open data are data that are linked and open. Tim Berners-Lee gives the

perfect definition of linked open data in differentiation with linked data, "Linked Open Data (LOD) is Linked

Data which is released under an open license, which does not impede its reuse for free". Large linked open

data sets include DB pedia and Wikidata. LOD project incorporated 1014 interlinked RDF data sets in 2014.

It spans a multitude of knowledge areas, such as geographic, government, life sciences, linguistics, media,

publications, and social networking. DB pedia is one among these linked open data which is interlinked with

the high number of other data sets. What was Interesting about this DB pedia is, it is an RDF representation

of Wikipedia. The size of this RDF Graph in the LOD cloud is measured in tens of billions of RDF triples

with lots of nodes and edges. Optimization of processing of SPARQL queries becomes indispensable as the

sizer of these RDF data graphs grows significantly. There is a need for complex, hypothesis-driven [4] and

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2159 http://www.webology.org

analytics-related queries, this becomes more essential. Henceforth more effort must be devoted to distributed

processing of SPARQL queries [5, 6]. Moreover, processing federated SPARQL queries on the LOD graph

[6] is challenging and requires vigorous research.

B. Graph Processing Systems

Graph processing systems like Map Reduce, Dyrad, and Spark compose data-parallel operators to transform

collections. They are capable of expressing a wide range of computation and applying vertex-centric logic to

transform data on a graph. They achieve more efficient distributed execution by exploiting the Graph

Structure. Nowadays, it is obvious that social networks, web graphs, and financial transaction networks can

be expressed as a graph. However, in the case of collaborative filtering, language modeling, deep learning,

and computer vision, the graph model can be enforced through modeling assumptions. The structure of a graph

can be denoted as G = (V; E) which has a set of vertices (v1, v2, v3… vn) and a set of m directed edges E

(e1,e2, …en. The resultant of graphs can have billions of vertices and edges. They are often, highly sparse

with complex, irregular, and often power-law structures [22]. Michele Knight (2021) states, "The property

graph is a type of graph model where relationships not only are connections but also carry a name (type) and

some properties" [23]. Alternatives in RDF are "Modeling workarounds (intermediate nodes), Reification [24]

and Singleton Property" [25] can be well represented through Property Graphs.

C. MapReduce, as a distributed dataflow framework

Distributed data flow framework like MapReduce is one of the Cluster compute frameworks but not suited

for graph analytics as many of their tasks are iterative [13]. Usually, a data model consists of typed collections,

a coarse-grained data-parallel programming model composed of deterministic operators. They transform

collections [12]. They also have a scheduler that breaks each job into a directed acyclic graph (DAG) of tasks

and a runtime that can endure stragglers and partial cluster failures without restarting. MapReduce data model

satisfies all the above characteristics [13]. This programming model depicts only two distributed dataflow

operators such as Map and Reduce. Every job can have the utmost two layers in its DAG of tasks [12]. Dyrad,

LINQ, Pig, and Spark are a few modern frameworks that uncover extra dataflow operators like fold and join

and can execute tasks with multiple layers of dependencies [13]. They have extensive acceptance for a wide

variety of data processing tasks, including ETL, SQL query processing, and iterative machine learning [12].

They are capable to scale for thousands of nodes operating on petabytes, exabytes, and zettabytes of data.

Nevertheless, MapReduce (MR) is a prevalent cluster computing paradigm, it cannot be used for graph

analytics because many graph analytics tasks are iterative [13].

D. Features of Apache Spark and Graph X

The remarkable features of Apache Spark and Graph x library are listed below

• Spark

Spark has several features that are particularly attractive for Graph X. The Spark storage

abstraction called Resilient Distributed Datasets (RDDs) is a fault-tolerant for In-Memory Cluster

Computing [10]. It enables applications to keep data in memory, which is essential for iterative

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2160 http://www.webology.org

graph algorithms. RDDs allow user-defined data partitioning [10]. Spark logs the lineage of

operations and offers a high-level API [8].

• Graph X

On top of Spark, Graph X is implemented [9]. It is a widely used data-parallel engine. A Spark

cluster consists of a single driver node and multiple worker nodes like Hadoop MapReduce where

the driver node is liable for task scheduling and dispatching and the worker nodes handle actual

computation and physical data storage [11]. Joseph E. Gonzalez et. al, (2014) states Graph X

accomplishes an order of magnitude performance gain over the base dataflow framework and

matches the performance of specialized graph processing systems while enabling a wider range of

computation[14]

E. Spark vs. MapReduce

Nevertheless, Spark also has numerous features that differentiate it from MapReduce engines which are

significant to the design of Graph X [8, 10]. It has many features such as In-Memory Caching, Computation

DAGs, Lineage-Based Fault Tolerance, Interactive Shell, and significance of key library Graph X in Spark

[8, 14]. There is Spark's API, for working with graphs of nodes and arcs. Graph X's inventors have a whole

section on RDF-related work stating "we adopt some of the core ideas from the RDF work including the triples

view of graphs" [7, 11].

III. RELATED WORK

Alfredo et al., (2016) proposed a framework for BFS-Based Implementation of RDF Graph Traversals over

MapReduce. However, this framework could be implemented on top of the Apache Spark analytical engine

since Spark exposes an optimized in-memory computation scheme for large-scale data processing [15].

Michael et al., (2017) achieved better query times with Mantona's graph-cache retrieval as compared to

retrieving queries through path traversals within a cached memory RDF-graph. Still, more experiments are

needed on a large scale triple-level to achieve improved retrieval results and can be expanded to include query

planning algorithms, based on dynamic programming [16].

Hubert et al., (2017) made a comprehensive study comparing four SPARQL query processing strategies for

Apache Spark RDF data stores and devised a SPARQL Hybrid strategy that allows for combining P Join and

Br Join. Nevertheless, the interaction between data partitioning schemes and distributed join algorithms as

part of a general distributed join optimization framework can be explored deeply [17].

Ahmed et al., (2020) performed a comprehensive performance analysis of Apache Hadoop and Apache

Spark for Large Scale Data Sets Using Hi Bench. Yet more parameters can be added in the workloads under

resource utilization and parallelization, to analyze the job performance of MapReduce and Spark when several

parameter configurations replace the default values [18].

Naacke et al., (2016) suggested techniques for processing SPARQL queries over a large RDF graph in a

distributed environment. However, this work can be extended by handling SPARQL queries over linked open

data (LOD). Moreover, this work motivates to revisit the classical problem of multi-query optimization for

distributed RDF graphs [19, 20].

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2161 http://www.webology.org

Peng Peng et al., (2016) proposed techniques for processing SPARQL queries over a large RDF graph in a

distributed environment. The current work can be extended by handling SPARQL queries over linked open

data where interconnected RDF repositories can be treated as a virtually integrated distributed database.

Furthermore observation stimulates us to go back to the classical problem of multi-query optimization in the

perspective of distributed RDF graphs [6].

Georgios et al., (2016) presented a framework for retrieving, analyzing, and storing medical information as

a multilayer graph, an intellectual format suitable for data fusion a. This can be enhanced by comprising

medical multilingual information retrieval and advanced text semantic analysis which can locate specific

points of interest or data for such a user and even selectively translate part of the retrieved documents [26].

Dong Wang et al., (2017) developed a set of graph-based RDF data management systems which follow the

approach of g Store, gStore-D and g Answer which are designed to support efficient SPARQL query

evaluation in a centralized and distributed/parallel environments Instead of join processing, graph exploration

can be used to boost the system’s performance [27].

Ahmed et al, (2020) present the empirical performance analysis between Hadoop and Spark based on a

large scale dataset with fewer workloads. Nevertheless, they did not investigate with remaining workloads

with more parameters, as well they did not work on semantic data [28].

IV. PROPOSED WORK

The previous work of representing RDF as the graph for University data from DB pedia has been explained

theoretically without experimental proof by M. Baby Nirmala, et. al, (2016) is as follows to have an

introductory knowledge about the proposed work [22]. Big data technology usage for RDF data processing is

fascinating as it would be motivating to output a typical Graph X graph as RDF so that SPARQL queries can

be performed on it. There is no typical way of expressing RDF graph data processing but read a good-sized

RDF dataset into Graph X and query through SPARQL. Spark with Scala provides a high number of higher-

order functions [16] so that the functions and data to structures can be stored in distributed memory [17, 18].

In the batch-oriented MapReduce model, this doesn't work as this permits interactive and iterative tasks like

machine learning tasks. Though these tasks work well. In the Spark version, they run 10X times faster because

of in-memory processing, thus reducing disk I/O that is typical of MapReduce jobs. Spark provides a data

structure called a Resilient Distributed Dataset, or RDD. Spark can watch over their distribution across

computing clusters by storing data in RDDs. "Graph X helps store a set of nodes, arcs, and crucially for RDF

types—extra information about each in RDDs" [18].

A. Representation of RDF using GraphX Systems using SCA

B. Property Graph for LinkedIn datasets

To construct a property graph consisting of the various details on the Graph X project, the vertex property

contains the Person, Skill, Position, Organization, City, Education, Degree, College, and Course.. The

Property Graph drawn for the LinkedIn dataset is given below in Fig. 1 and the converted Vertices and Edge

tables are given in Table 1 and 2. From the Vertex table and Edge table, the initial graph will be built for

further RDF Graph data processing, thus giving improved performance through SPARQL querie

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2162 http://www.webology.org

TABLE I. VERTEX TABLE

Id Property (V Vertice), Value

1 Person, Evan Smith

2 Skill, Programming

3 Position, Software Engineer

4 Organization, Infosys

5 Education, Post-Graduation

6 College, Stanford

7 Degree, MTech

8 Course, Computer Science and Engineering

9 City

TABLE II. EDGE TABLE

SourceId Destination

Id

Property

(E -Edge)

1 2 Has Skill

1 3 Works As

4 3 Has Position

4 9 lives

1 9 location

1 5 Has Education

5 6 Has Studied

5 7 Has Degree

5 8 major

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2163 http://www.webology.org

FIG 1, PROPERTY GRAPH OF THE LINKEDIN DATASET

C. Methodology

The process flow of the proposed methodology of in-memory processing of RDF graph data is given below

in Fig. 2.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2164 http://www.webology.org

FIG 2. RDF GRAPH PROCESSING USING SPARK WITH GRAPHX AND SCALA

ALGORITHMS TO PRODUCE TRIPLES AND SEARCH VALUES

FIG 3. ALGORITHMS FOR PRODUCING TRIPLES AND SEARCH VALUES

Algorithms to process these workflows are given as follows in Figure 3. The Time Complexity of this

approach is O(1) where the time complexity of earlier approaches are O(n) and O(log n) as they go for a

complete scan and use search techniques.

D. Brief of Scala Program that creates an RDD and stores and queries information of this property

Graph

Scala program created for the Property Graph mentioned above creates RDDs called nodes about Person in

LinkedIn and RDDs called relationships [22]. This stores information about edges that connect the nodes. For

representing, nodes RDDs use long integers such as 3L and 7L which can store extra information about nodes

[22]. For example, a person can have other information like Software Engineer as Position and Post-

Graduation as a relationship can be represented with 3L. Extra nodes can be added to make SPARQL queries,

work a little more. Once the RDDs are created for Nodes and Edges, the initial Graph can be built. Then the

code in Scala is applied to produce RDF triples using a base URI. SPARQL queries can be created to retrieve

information from this in-memory graph processing system to enhance performance

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Cluster Architecture

It is significant to study the performance of these frameworks and understand the importance of different

parameters. In these experiments, cluster performance is presenter based on MapReduce and Spark using the

Hi Bench suite. In particular, one Hi bench workload out of thirteen standard workloads is selected to represent

here is Tera Sort (shuffle job) with large RDF datasets. In the future, N weight is to be used as workload which

is used for Graph benchmarking. It is an iterative Graph parallel algorithm implemented in the Spark Graph

X library. It computes associations between two vertices that are n-hop away.

B. Hibench Suite with Workload

Algorithm to produce Triples

Input : RDF data sets

Output : Triples

1. Representing Subject, Object as Vertice

2. Representing relationships as edges

3. Create an RDD for the vertices

4. Create an RDD for edges

5. Build the initial property Graph

6. Producing RDF Triples

Algorithm to search values through SPARQL

Input: Queries

Result : Required Informatio

1. Select Vertices

2. from triples

3. Where <condition>

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2165 http://www.webology.org

Hi Bench is a big data benchmark suite that helps evaluate different big data frameworks in terms of speed,

throughput, and system resource utilization. It contains a set of Hadoop, Spark, and streaming workloads,

including Sort, Word Count, Tera Sort, Repartition, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans,

N Weight, and enhanced DFSIO, etc. It also contains several streaming workloads for Spark Streaming, Flink,

Storm, and Gear pump.

Workloads: There are a total of 29 workloads in Hi Bench. The workloads are divided into 6 micro categories,

ml (machine learning), SQL, graph, Web search, and streaming. The workload used here is Tera Sort which

is a standard benchmark created by Jim Gray. Its input data is generated by the Hadoop Tera Gen example

program.

C. Results of Hadoop and Spark with Tera Sort workload with varied input splits task is given below

TABLE III. EXPERIMENTAL HADOOP CLUSTER

Server

Configuration

Processor 2.5 GHz

Main Memory 16 GB

Local Storage 2 TB

Operating System Intel ® Xeon ® CPU ©3.40 GHz

Node Configuration Main Memory 4 GB

No. of nodes 4

Local storage 1 TB each 4 TB total

Operating System Ubuntu 16.04.2

Software Operating System Ubuntu 16.04.2

 JDK 1.8.0

 Hadoop 2.4.0

 Spark 2.1.0

Workload Micro Benchmark Tera soft

Datasets Db pedia, Kaggle LinkedIn data

TABLE IV. EVALUATION RESULTS OF RDF GRAPH DATA PROCESSING IN HADOOP AND SPARK IN TERASORT

WORKLOAD

Data

Size(GB)

X

Execution Time(sec) Y

MR

256MB

SPARK

256MB

MR

512MB

SPARK

512MB

MR

1024MB

SPARK

1024MB

50 2347 147 2347 158 2347 160

100 4143 1143 4145 1142 4142 1142

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2166 http://www.webology.org

TABLE V. THE BEST EXECUTION TIME OF MAPREDUCE AND SPARK WITH TERASORT WORKLOAD

FIG 4. VISUALIZATION OF EXECUTION TIME FOR VARIOUS SIZED RDF GRAPH DATA PROCESSING IN

HADOOP AND SPARK WITH TERASORT WORKLOAD

0

10000

20000

30000

40000

50000

0 100 200 300 400 500 600 700

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
)

Data Size (GB)

MapReduce Vs Spark_InputSplit (Terasort)
MapReduce 256 MB
Spark 256 MB
MapReduce 516 MB
Spark 512 MB
MapReduce 1024 MB

150 6142 1243 6146 1343 6143 1443

200 9147 1345 12647 1544 12444 1645

250 10247 2047 15147 2043 15147 2045

300 20147 2258 20147 2258 21554 2258

350 21114 2347 22547 2347 24147 2347

400 25247 2447 25245 2447 25250 2447

450 26243 3153 27658 3785 29149 3439

500 31256 4947 31257 4757 31258 3957

550 37248 5147 34148 4147 32649 4047

600 42153 7648 40147 6147 39147 2645

Workload Split sizes (MB) Execution time (sec)

MapReduce input splits (Tera

Sort)

256 21114

Spark input splits (Tera Sort) 512 & 1024 3785 & 3439

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2167 http://www.webology.org

VI. CONCLUSION AND FUTUREWORK

In this work, the time complexity of the proposed work has been improved and performance analysis of RDF

Graph Data Processing with Hadoop-MapReduce and Spark-Graph X has been done. This work can be further

extended by evaluating the performance of RDF graph data processing in other cloud platforms such as

Microsoft Azure public IaaS clouds, Google Compute Engine, or Rackspace with varying data size up to 10

to 100 terabytes (TB) of data and with workload N weight in Hi bench suite. This study helped to illustrate

the improvement in the performance while running through SPARK platform added with Graph X library.

This work is the commencement to drive for semantic graph analytics to further the depth of research. Future

work can include deriving more insights from this structure like unknown relationships. Pattern matching.

Connectivity Analytics and Centrality Analytics are some other research areas.

REFERNCES

1. Mc Bride,“Jena: Implementing the RDF model and syntax specification.” in SemWeb'01: Proceedings of

the Second International Conference on Semantic Web - Volume 40, May 2001 Pages 23–28. Available

from https://dl.acm.org/doi/10.5555/2889966.2889969.

2. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, “SPARQL basic graph pattern

optimization using selectivity estimation,” in Proceedings of the 17th international conference on World

Wide Web. ACM, 595–604, 2008. Available from https://dl.acm.org/doi/10.1145/1367497.1367578

3. Heath, T., and Bizer, C., “Linked data: Evolving the web into a global data space. Synthesis lectures on

the semantic web: theory and technology”, 2011. Available from

https://dl.acm.org/doi/10.1145/1772690.1772907

4. Gosal, K. J. Kochut, and N. Kannan, “Prokino: an ontology for integrative analysis of protein kinases in

cancer” PloS one, 6(12), 2011. Available from https://doi.org/10.1371/journal.pone.0028782

5. J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL querying of large RDF graphs,” Proceedings of

the VLDB Endowment, 4(11), 1123–1134, 2011. Available from

https://dl.acm.org/doi/10.14778/3402707.3402747

6. P. Peng, L. Zou, M. T. O¨ zsu, L. Chen, and D. Zhao, “Processing SPARQL queries over linked data–a

distributed graph based approach,” arXiv preprint arXiv:1411.6763, 2014. Available from

https://arxiv.org/abs/1411.6763

7. Reynold S. Xin, Daniel Crankshaw, Ankur Dave, Joseph E. Gonzalez, Michael J. Franklin Ion Stoica,

“GraphX: Unifying Data-Parallel and Graph-Parallel analytics”, SPARK Summit 2014. Available from

https://arxiv.org/abs/1402.2394;

8. Mohammed Guller,” Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark for Large

Scale Data Analytics”, 2015. Available from https://link.springer.com/book/10.1007/978-1-4842-0964-6

9. Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui

Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational

Data Processing in Spark (SIGMOD). 1383–1394.Available from

https://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf

10. M. Zaharia et al. “Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster

computing”, NSDI, 2012. Available from http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

https://arxiv.org/abs/1402.2394
https://link.springer.com/book/10.1007/978-1-4842-0964-6
https://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2168 http://www.webology.org

11. James A. Scott., “Getting started with Apache Spark”, MapR technologies Inc, 2015, First Edition.

Available from

12. https://www.bigdata-toronto.com/2016/assets/getting_started_with_apache_spark.pdf

13. John A. Miller, Lakshmish Ramaswamy, Krys J. Kochut, and Arash J.Z. Fard, "Directions for Big Data

Graph Analytics Research," International Journal of Big Data, (IJBD), Vol. 2, No. 1 (September 2015)

pp. 15-27. Available from http://cobweb.cs.uga.edu/~jam/papers/

14. John A. Miller, Lakshmish Ramaswamy, Krys J. Kochut, and Arash Fard, "Research Directions for Big

Data Graph Analytics," Proceedings of the 4th IEEE International Congress on Big Data (ICBD'15), New

York, New York (June-July 2015) pp. 785-794. Available from DOI: 10.1109/BigDataCongress.2015.132

15. Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.

2014. GraphX: Graph Processing in a Distributed Dataflow Framework. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 599-

-613. Available from

16. https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-gonzalez.pdf

17. Alfredo Cuzzocrea, Mirel Cosulschi, and Roberto de Virgilio, “An Effective and Efficient MapReduce

Algorithm for Computing BFS-Based Traversals of Large-Scale RDF Graphs”, Algorithms, 2016.

Available from https://www.mdpi.com/1999-4893/9/1/7

18. Amir H. Payberah, “A Crash course in Scala”, 2015. Available from

https://www.sics.se/~amir/files/download/dic/scala.pdf

19. Amir H. Payberah, “Spark and Resilient Distributed Datasets”, 2015. Available from

https://www.sics.se/~amir/files/download/dic/spark.pdf

20. Michael J. Lewis, George K. Thiruvathukal, Michael J. Papka, Andrew Johnson, “A Distributed Graph

Approach for Pre-processing Linked RDF Data Using Supercomputers”, Journal of Bigdata,2020.

Available from https://dl.acm.org/doi/10.1145/3066911.3066913 and

21. https://ecommons.luc.edu/cgi/viewcontent.cgi?article=1141&context=cs_facpubs

22. Hubert Naacke, Oliver Cure, Bernd Amann, “SPARQL Query Processing with Apache Spark”,ACM,

2016. Available from https://arxiv.org/abs/1604.08903

23. Hubert Naacke, Oliver Cure, Bernd Amann, “SPARQL Graph Pattern Processing with Apache Spark”,

ACM, 2017. Available from https://dl.acm.org/doi/10.1145/3078447.3078448

24. Baby Nirmala. M., Sathiaseelan. J.G.R.,” Big semantic data analytics: A theoretical study on the

implementation of technologies and tools”, International Journal of Applied Engineering Research, ISSN

0973-4562, 10(20), 2015. Available from https://www.ripublication.com/Volume/ijaerv10n20spl.htm

25. M. Baby Nirmala , J.G.R Sathiaseelan “An Innovative Approach to RDF Graph Data Processing: Spark

with GraphX and Scala ”, IJCTA, 9(26) 2016, pp. 425-434© International Science Press. Available

from

26. https://serialsjournals.com/abstract/46497_55.pdf

27. Michelle Knight, Property Graph. Available from https://www.dataversity.net/what-is-a-property-graph/

on 13-Apr-2022.

28. Notes on Reification. Available from https://jena.apache.org/documentation/notes/reification.html on 13-

Apr-2022.

https://www.bigdata-toronto.com/2016/assets/getting_started_with_apache_spark.pdf
http://cobweb.cs.uga.edu/~jam/papers/
https://ieeexplore.ieee.org/document/7207314
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-gonzalez.pdf
https://www.mdpi.com/1999-4893/9/1/7
https://www.sics.se/~amir/files/download/dic/scala.pdf
https://www.sics.se/~amir/files/download/dic/spark.pdf
https://dl.acm.org/doi/10.1145/3066911.3066913
https://ecommons.luc.edu/cgi/viewcontent.cgi?article=1141&context=cs_facpubs
https://arxiv.org/abs/1604.08903
https://dl.acm.org/doi/10.1145/3078447.3078448
https://www.ripublication.com/Volume/ijaerv10n20spl.htm
https://serialsjournals.com/abstract/46497_55.pdf
https://www.dataversity.net/what-is-a-property-graph/

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2169 http://www.webology.org

29. Vinh Nguyen, Oliver Boldenreider, Amit Sheth, “Don't like RDF reification?: making statements about

statements using singleton property”, WWW '14: Proceedings of the 23rd international conference on

World wide web, April 2014, Pages 759–770. Available from http://dl.acm.org/citation.cfm?id=2567973

30. Georgios Drakopoulos, Vasileios Megalooikonomou, “A Graph Framework for Multimodal Medical

Information Processing”, eTELEMED 2016 : The Eighth International Conference on eHealth,

Telemedicine, and Social Medicine (with DIGITAL HEALTHY LIVING 2016 / MATH 2016). Available

from https://frailsafe-project.eu/images/frailsafe/results/eTELEMED-2016- UoP.pdf

31. Dong Wang, Lei Zou, and Dongyan Zhao, “gst-store: Querying Large Spatiotemporal RDF Graphs”, Data

and Information Management2017; 1(2):84–103. Available from DOI: https://doi.org/10.1515/dim-2017-

0008

32. N. Ahmed, Andre L. C. Barczak , Teo Susnjak and Mohammed A. Rashid, “A comprehensive

performance analysis of Apache Hadoop and Apache Spark for large scale data sets using Hi Bench”,

Journal of Big Data (2020) 7:110. Available from https://doi.org/10.1186/s40537-020-00388-5

http://dl.acm.org/citation.cfm?id=2567973
https://frailsafe-project.eu/images/frailsafe/results/eTELEMED-2016-%20UoP.pdf
https://doi.org/10.1515/dim-2017-0008
https://doi.org/10.1515/dim-2017-0008
https://doi.org/10.1186/s40537-020-00388-5

