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Abstract—  

Ever-growing linked open data proliferate in size and number giving rise to “Big data problems”. 

Consequently, there is a rapid increase inf semantic data and services.  It is significant to handle and provide 

more solutions to very large semantic data graphs are very significant. As the MapReduce algorithms are 

iterative and less effective, there is a need to go for in-memory processing. Ain of this paper is providing an 

enhanced RDF graph data processing approach with improved performance includes representation of RDF 

as a Directed labeled Multigraph, convert that RDF Graph as property Graph to have modeling workarounds 

(intermediate nodes), Reification and Singleton Property. Build this initial graph in high- performance analytic 

system SPARK with Graph X library using SCALA language to provide higher-order functions. So that 

functions and data structures can be stored in distributed memory and use SPARQL for query processing. The 

objective is of this paper is to propose an enhanced RDF Graph in-memory processing method that quickens 

the accessing of RDF Graph data, improves response times, and reduces the execution of time of RDF Graph 

data processing of this Social Network data. 

Keywords— Large Linked Open Data; In-memory processing; RDF; MapReduce; Spark; Graph X;  Scala. 

I. INTRODUCTION  

The Web 3.0 otherwise called the Semantic Web is introduced by Tim Berners-Lee, is the extension of the 

World Wide Web through standards established by the World Wide Web Consortium.  This World Wide Web 

has progressed to support data sharing and reuse "across applications, initiatives, and community boundaries. 

Some of the basic building blocks of the Semantic web include Resource Description Framework (RDF), 

RDFS, the Web Ontology Language (OWL), and SPARQL. It has many challenges such as massiveness, 

indistinctness, ambiguity, inconsistency, and deceit. Automated reasoning systems should handle all these 

problems [1]. Query processing should be addressed proficiently with highly accessible, scalable, and fault-
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tolerant frameworks. Usually, the data management systems requiring these properties are designed not from 

scratch but built on top of the prevailing cluster computing engine. 

II. BACKGROUND 

1. Representation of RDF as Gra 

Resource Description Framework (RDF) is the key-tech for developing semantic web. In Graph database 

modes data is represented as directed labeled multi-graph.  Theoretically, in the same way, the data encoded 

using RDF also can be represented. In RDF Graph, resources (IRIs), blank nodes, and literals can be represented 

as Vertices and edges from RDF triples. In other words, Subjects and Objects can be represented as nodes and 

Predicates as Edges.  The edge's label is an IRI which is the predicate of the triple. RDF graph differs slightly 

in the case of the blank node as they have no identifiers. These RDF triples produced are used as Triple stores 

which are organized as graphs [1] [ 21]. 

A. SPARQL, as the Query Language 

 

A Highly recommended query language for RDF datasets by World Wide Web Consortium is SPARQL. 

The following is an example of SPARQL query language: 

 

SELECT? x,? y,? z 

WHERE {x a Student. y a Representative. z a Scholar. 

x friend y. 

x competes with z. 

y friend z 

 

Extensive research has been conducted to optimize query engines. Sophisticated indexing approaches and 

graph-based storage models are developed due to the unsettled research in this area [2]. Linked Data is 

structured and interlinked with other data, through semantic queries they become more beneficial. It is built 

upon the technologies such as HTTP, RDF which serves web pages for human readers. LOD extends them to 

share the information which can be read by computers automatically. One of the visions of linked data is to 

make the Internet to be a global database [3]. Linking Open Data Heath, T et al, (2013) say "Linked Open 

Data (LOD) project has been initiated to provide a method of publishing a variety of structured data sets as 

interlinked RDF data sets". Linked open data are data that are linked and open. Tim Berners-Lee gives the 

perfect definition of linked open data in differentiation with linked data, "Linked Open Data (LOD) is Linked 

Data which is released under an open license, which does not impede its reuse for free". Large linked open 

data sets include DB pedia and Wikidata. LOD project incorporated 1014 interlinked RDF data sets in 2014.  

It spans a multitude of knowledge areas, such as geographic, government, life sciences, linguistics, media, 

publications, and social networking. DB pedia is one among these linked open data which is interlinked with 

the high number of other data sets. What was Interesting about this DB pedia is, it is an RDF representation 

of Wikipedia. The size of this RDF Graph in the LOD cloud is measured in tens of billions of RDF triples 

with lots of nodes and edges. Optimization of processing of SPARQL queries becomes indispensable as the 

sizer of these RDF data graphs grows significantly. There is a need for complex, hypothesis-driven [4] and 
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analytics-related queries, this becomes more essential. Henceforth more effort must be devoted to distributed 

processing of SPARQL queries [5, 6]. Moreover, processing federated SPARQL queries on the LOD graph 

[6] is challenging and requires vigorous research. 

 

B. Graph Processing Systems 

Graph processing systems like Map Reduce, Dyrad, and Spark compose data-parallel operators to transform 

collections. They are capable of expressing a wide range of computation and applying vertex-centric logic to 

transform data on a graph. They achieve more efficient distributed execution by exploiting the Graph 

Structure. Nowadays, it is obvious that social networks, web graphs, and financial transaction networks can 

be expressed as a graph. However, in the case of collaborative filtering, language modeling, deep learning, 

and computer vision, the graph model can be enforced through modeling assumptions. The structure of a graph 

can be denoted as G = (V; E) which has a set of vertices (v1, v2, v3… vn) and a set of m directed edges E 

(e1,e2, …en. The resultant of graphs can have billions of vertices and edges. They are often, highly sparse 

with complex, irregular, and often power-law structures [22]. Michele Knight (2021) states, "The property 

graph is a type of graph model where relationships not only are connections but also carry a name (type) and 

some properties" [23]. Alternatives in RDF are "Modeling workarounds (intermediate nodes), Reification [24] 

and Singleton Property" [25] can be well represented through Property Graphs. 

 

C. MapReduce, as a distributed dataflow framework 

Distributed data flow framework like MapReduce is one of the Cluster compute frameworks but not suited 

for graph analytics as many of their tasks are iterative [13]. Usually, a data model consists of typed collections, 

a coarse-grained data-parallel programming model composed of deterministic operators. They transform 

collections [12]. They also have a scheduler that breaks each job into a directed acyclic graph (DAG) of tasks 

and a runtime that can endure stragglers and partial cluster failures without restarting. MapReduce data model 

satisfies all the above characteristics [13]. This programming model depicts only two distributed dataflow 

operators such as Map and Reduce. Every job can have the utmost two layers in its DAG of tasks [12]. Dyrad, 

LINQ, Pig, and Spark are a few modern frameworks that uncover extra dataflow operators like fold and join 

and can execute tasks with multiple layers of dependencies [13]. They have extensive acceptance for a wide 

variety of data processing tasks, including ETL, SQL query processing, and iterative machine learning [12]. 

They are capable to scale for thousands of nodes operating on petabytes, exabytes, and zettabytes of data. 

Nevertheless, MapReduce (MR) is a prevalent cluster computing paradigm, it cannot be used for graph 

analytics because many graph analytics tasks are iterative [13]. 

 

D. Features of Apache Spark and Graph X 

The remarkable features of Apache Spark and  Graph x library are listed below 

 

• Spark 

Spark has several features that are particularly attractive for Graph X. The Spark storage 

abstraction called Resilient Distributed Datasets (RDDs) is a fault-tolerant for In-Memory Cluster 

Computing [10]. It enables applications to keep data in memory, which is essential for iterative 
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graph algorithms. RDDs allow user-defined data partitioning [10]. Spark logs the lineage of 

operations and offers a high-level API [8]. 

• Graph X 

On top of Spark, Graph X is implemented [9]. It is a widely used data-parallel engine. A Spark 

cluster consists of a single driver node and multiple worker nodes like Hadoop MapReduce where 

the driver node is liable for task scheduling and dispatching and the worker nodes handle actual 

computation and physical data storage [11]. Joseph E. Gonzalez et. al, (2014) states Graph X 

accomplishes an order of magnitude performance gain over the base dataflow framework and 

matches the performance of specialized graph processing systems while enabling a wider range of 

computation[14] 

 

E. Spark vs. MapReduce 

Nevertheless, Spark also has numerous features that differentiate it from MapReduce engines which are 

significant to the design of Graph X [8, 10]. It has many features such as In-Memory Caching, Computation 

DAGs, Lineage-Based Fault Tolerance, Interactive Shell, and significance of key library Graph X in Spark 

[8, 14]. There is Spark's API, for working with graphs of nodes and arcs. Graph X's inventors have a whole 

section on RDF-related work stating "we adopt some of the core ideas from the RDF work including the triples 

view of graphs" [7, 11]. 

 

III. RELATED WORK 

Alfredo et al., (2016) proposed a framework for BFS-Based Implementation of RDF Graph Traversals over 

MapReduce. However, this framework could be implemented on top of the Apache Spark analytical engine 

since Spark exposes an optimized in-memory computation scheme for large-scale data processing [15]. 

Michael et al., (2017) achieved better query times with Mantona's graph-cache retrieval as compared to 

retrieving queries through path traversals within a cached memory RDF-graph. Still, more experiments are 

needed on a large scale triple-level to achieve improved retrieval results and can be expanded to include query 

planning algorithms, based on dynamic programming [16]. 

Hubert et al., (2017) made a comprehensive study comparing four SPARQL query processing strategies for 

Apache Spark RDF data stores and devised a SPARQL Hybrid strategy that allows for combining P Join and 

Br Join. Nevertheless, the interaction between data partitioning schemes and distributed join algorithms as 

part of a general distributed join optimization framework can be explored deeply [17]. 

Ahmed et al., (2020) performed a comprehensive performance analysis of Apache Hadoop and Apache 

Spark for Large Scale Data Sets Using Hi Bench. Yet more parameters can be added in the workloads under 

resource utilization and parallelization, to analyze the job performance of MapReduce and Spark when several 

parameter configurations replace the default values [18]. 

Naacke et al., (2016) suggested techniques for processing SPARQL queries over a large RDF graph in a 

distributed environment. However, this work can be extended by handling SPARQL queries over linked open 

data (LOD). Moreover, this work motivates to revisit the classical problem of multi-query optimization for 

distributed RDF graphs [19, 20]. 
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Peng Peng et  al., (2016) proposed techniques for processing SPARQL queries over a large RDF graph in a 

distributed environment. The current work can be extended by handling SPARQL queries over linked open 

data where interconnected RDF repositories can be treated as a virtually integrated distributed database. 

Furthermore observation stimulates us to go back to the classical problem of multi-query optimization in the 

perspective of distributed RDF graphs [6]. 

Georgios et al., (2016) presented a framework for retrieving, analyzing, and storing medical information as 

a multilayer graph, an intellectual format suitable for data fusion a. This can be enhanced by comprising 

medical multilingual information retrieval and advanced text semantic analysis which can locate specific 

points of interest or data for such a user and even selectively translate part of the retrieved documents [26]. 

Dong Wang et al., (2017) developed a set of graph-based RDF data management systems which follow the 

approach of g Store, gStore-D and g Answer which are designed to support efficient SPARQL query 

evaluation in a centralized and distributed/parallel environments Instead of join processing, graph exploration 

can be used to boost the system’s performance [27]. 

Ahmed et al, (2020) present the empirical performance analysis between Hadoop and Spark based on a 

large scale dataset with fewer workloads. Nevertheless, they did not investigate with remaining workloads 

with more parameters, as well they did not work on semantic data [28]. 

IV. PROPOSED WORK 

The previous work of representing RDF as the graph for University data from DB pedia has been explained 

theoretically without experimental proof by M. Baby Nirmala, et. al,  (2016) is as follows to have an 

introductory knowledge about the proposed work [22]. Big data technology usage for RDF data processing is 

fascinating as it would be motivating to output a typical Graph X graph as RDF so that SPARQL queries can 

be performed on it. There is no typical way of expressing RDF graph data processing but read a good-sized 

RDF dataset into Graph X and query through SPARQL. Spark with Scala provides a high number of higher-

order functions [16] so that the functions and data to structures can be stored in distributed memory [17, 18]. 

In the batch-oriented MapReduce model, this doesn't work as this permits interactive and iterative tasks like 

machine learning tasks.  Though these tasks work well. In the Spark version, they run 10X times faster because 

of in-memory processing, thus reducing disk I/O that is typical of MapReduce jobs. Spark provides a data 

structure called a Resilient Distributed Dataset, or RDD. Spark can watch over their distribution across 

computing clusters by storing data in RDDs. "Graph X helps store a set of nodes, arcs, and crucially for RDF 

types—extra information about each in RDDs" [18].  

A. Representation of RDF using GraphX Systems using SCA 

B. Property Graph for LinkedIn datasets 

To construct a property graph consisting of the various details on the Graph X project, the vertex property 

contains the Person, Skill, Position, Organization, City, Education, Degree, College, and Course.. The 

Property Graph drawn for the LinkedIn dataset is given below in Fig.  1 and the converted Vertices and Edge 

tables are given in Table 1 and 2. From the Vertex table and Edge table, the initial graph will be built for 

further RDF Graph data processing, thus giving improved performance through SPARQL querie 
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TABLE I.  VERTEX TABLE 

Id Property (V Vertice), Value 

 

1 Person, Evan Smith 

 

2 Skill, Programming 

 

3 Position, Software Engineer 

4 Organization, Infosys 

5 Education, Post-Graduation 

6 College, Stanford 

7 Degree, MTech 

8 Course, Computer Science and Engineering 

9 City 

 

TABLE II.  EDGE TABLE 

SourceId Destination 

Id 

Property 

(E -Edge) 

1 2 Has Skill 

1 3 Works As 

4 3 Has Position 

4 9 lives 

1 9 location 

1 5 Has Education 

5 6 Has Studied 

5 7 Has Degree 

5 8 major 
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FIG 1,  PROPERTY GRAPH OF THE LINKEDIN DATASET 

 

C. Methodology 

The process flow of the proposed methodology of in-memory processing of RDF graph data is given below 

in Fig. 2.  
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FIG 2.   RDF GRAPH PROCESSING USING SPARK WITH GRAPHX AND SCALA 

ALGORITHMS TO PRODUCE TRIPLES AND SEARCH VALUES 

 

 

 

 

FIG 3.   ALGORITHMS FOR PRODUCING TRIPLES AND SEARCH VALUES 

Algorithms to process these workflows are given as follows in Figure 3. The Time Complexity of this 

approach is O(1) where the time complexity of earlier approaches are O(n) and O(log n) as they go for a 

complete scan and use search techniques. 

D. Brief of Scala Program that creates an RDD and stores and queries information of this property 

Graph 

Scala program created for the Property Graph mentioned above creates RDDs called nodes about Person in 

LinkedIn and RDDs called relationships [22]. This stores information about edges that connect the nodes. For 

representing, nodes RDDs use long integers such as 3L and 7L which can store extra information about nodes 

[22]. For example, a person can have other information like Software Engineer as Position and Post-

Graduation as a relationship can be represented with 3L. Extra nodes can be added to make SPARQL queries, 

work a little more. Once the RDDs are created for Nodes and Edges, the initial Graph can be built. Then the 

code in Scala is applied to produce RDF triples using a base URI. SPARQL queries can be created to retrieve 

information from this in-memory graph processing system to enhance performance 

 

V. EXPERIMENTAL RESULTS  AND DISCUSSIONS 

 

A. Cluster Architecture 

It is significant to study the performance of these frameworks and understand the importance of different 

parameters. In these experiments, cluster performance is presenter based on MapReduce and Spark using the 

Hi Bench suite. In particular, one Hi bench workload out of thirteen standard workloads is selected to represent 

here is Tera Sort (shuffle job) with large RDF datasets. In the future, N weight is to be used as workload which 

is used for Graph benchmarking. It is an iterative Graph parallel algorithm implemented in the Spark Graph 

X library. It computes associations between two vertices that are n-hop away. 

 

B. Hibench Suite with Workload 

Algorithm to produce Triples  

Input : RDF data sets 

Output : Triples 

1. Representing Subject, Object  as Vertice 

2. Representing relationships as edges 

3. Create an RDD for the vertices 

4. Create an RDD for edges 

5. Build the initial property Graph 

6. Producing RDF Triples 

Algorithm to search values through SPARQL 

Input: Queries 

Result : Required Informatio 

 

1. Select Vertices 

2. from triples 

3. Where <condition> 
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Hi Bench is a big data benchmark suite that helps evaluate different big data frameworks in terms of speed, 

throughput, and system resource utilization. It contains a set of Hadoop, Spark, and streaming workloads, 

including Sort, Word Count, Tera Sort, Repartition, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans, 

N Weight, and enhanced DFSIO, etc. It also contains several streaming workloads for Spark Streaming, Flink, 

Storm, and Gear pump. 

Workloads: There are a total of 29 workloads in Hi Bench. The workloads are divided into 6 micro categories, 

ml (machine learning), SQL, graph, Web search, and streaming. The workload used here is Tera Sort which 

is a standard benchmark created by Jim Gray. Its input data is generated by the Hadoop Tera Gen example 

program. 

 

 

C. Results of Hadoop and Spark with Tera Sort workload with varied input splits task is given below 

 

TABLE III.  EXPERIMENTAL HADOOP CLUSTER 

Server 

Configuration 

Processor 2.5 GHz 

Main Memory 16 GB 

Local Storage 2 TB 

Operating System Intel ® Xeon ® CPU ©3.40 GHz 

Node Configuration Main Memory 4 GB 

No. of  nodes 4 

Local storage 1 TB each 4 TB total 

Operating System Ubuntu 16.04.2 

Software Operating System Ubuntu 16.04.2 

 JDK 1.8.0 

 Hadoop 2.4.0 

 Spark 2.1.0 

Workload Micro Benchmark Tera soft 

Datasets Db pedia, Kaggle LinkedIn data 

 

TABLE IV.  EVALUATION RESULTS OF RDF GRAPH DATA PROCESSING IN HADOOP AND SPARK IN TERASORT 

WORKLOAD 

Data 

Size(GB)   

X 

Execution Time(sec)   Y 

MR  

256MB 

SPARK 

256MB 

MR  

512MB 

SPARK 

512MB 

MR  

1024MB 

SPARK 

1024MB 

50 2347 147 2347 158 2347 160 

100 4143 1143 4145 1142 4142 1142 
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TABLE V.  THE BEST EXECUTION TIME OF MAPREDUCE AND SPARK WITH TERASORT WORKLOAD 

 

 

 

 

FIG 4. VISUALIZATION OF  EXECUTION TIME FOR VARIOUS SIZED RDF GRAPH DATA PROCESSING IN 

HADOOP AND  SPARK WITH TERASORT WORKLOAD 
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Data Size (GB)

MapReduce Vs Spark_InputSplit (Terasort)
MapReduce 256 MB
Spark 256 MB
MapReduce 516 MB
Spark 512 MB
MapReduce 1024 MB

150 6142 1243 6146 1343 6143 1443 

200 9147 1345 12647 1544 12444 1645 

250 10247 2047 15147 2043 15147 2045 

300 20147 2258 20147 2258 21554 2258 

350 21114 2347 22547 2347 24147 2347 

400 25247 2447 25245 2447 25250 2447 

450 26243 3153 27658 3785 29149 3439 

500 31256 4947 31257 4757 31258 3957 

550 37248 5147 34148 4147 32649 4047 

600 42153 7648 40147 6147 39147 2645 

Workload Split sizes (MB) Execution time (sec) 

MapReduce input splits (Tera 

Sort) 

256 21114 

Spark input splits (Tera Sort) 512 & 1024 3785 & 3439 
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VI. CONCLUSION AND FUTUREWORK 

In this work, the time complexity of the proposed work has been improved and performance analysis of RDF 

Graph Data Processing with Hadoop-MapReduce and Spark-Graph X has been done. This work can be further 

extended by evaluating the performance of RDF graph data processing in other cloud platforms such as 

Microsoft Azure public IaaS clouds, Google Compute Engine, or Rackspace with varying data size up to 10 

to 100 terabytes (TB) of data and with workload N weight in Hi bench suite. This study helped to illustrate 

the improvement in the performance while running through SPARK platform added with Graph X library. 

This work is the commencement to drive for semantic graph analytics to further the depth of research. Future 

work can include deriving more insights from this structure like unknown relationships. Pattern matching. 

Connectivity Analytics and Centrality Analytics are some other research areas. 
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